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Abstract In this paper we are concerned with the

t-dependent cooling velocity during laser welding sequen-

ces. The temperature profile has been yielded by using

keyhole approximation for the melted zone and solving the

heat transfer equation. A polynomial expansion has been

adopted as a guide to determining the cooling velocity

during welding cut-off stage. A thorough comparison with

experimental results and recently published profiles has

been carried out.
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Introduction

In the last decades, a huge increase in the need for high

power lasers for precision welding has been noticed. Par-

allel to this trend, laser welding computing numerical

techniques have improved to the point where numerical

modelling [1–6] began more and more accepted as a guide

to prediction of weld geometries and temperature profiling.

The laser welding keyhole (Fig. 1) model was proposed

in the earliest studies as an alternative to both Gaussian and

double ellipsoidal (DE) models. In the end of the last

decade, two relevant models were consecutively proposed

and discussed by Singh and Narayan [1] and Anisimov

et al. [2]. The latter model was more realistic, since it did

not adopt the assumption of isothermal expansion inside

the keyhole.

In this study, we tried to set a cylindrical model as a

guide to solve the heat equation inside the heated keyhole

and evaluate the cooling velocity in the relaxation phase.

Keyhole approximation model

In this section we try to describe the keyhole and its for-

mation relevant steps (Fig. 2).

Our keyhole approximation model (Fig. 3) is based on

the following assumptions:

– The keyhole vertical edges temperature is equal to the

boiling point of the material.

– The heat transfer along directions perpendicular to the

incident laser beam is invariant under cylindrical

symmetry.

– The heat source is assumed to be Gaussian and centred

along the keyhole axis.

A. Belhadj (&)

U.R. MA2I - L. MECASURF, ENIT - Art et Métiers ParisTech,

Aix-en-Provence, France

e-mail: assma_belhadj@yahoo.fr

J. Bessrour � M. Bouhafs

U.R. MA2I, ENIT, Tunis, Tunisia

e-mail: jamel.bessrour@enit.rnu.tn

M. Bouhafs

e-mail: mahmoud.bouhafs@enit.rnu.tn

L. Barrallier

L. MECASURF, Art et Métiers ParisTech, Aix-en-Provence,

France

e-mail: laurent.barrallier@ensam.eu

123

J Therm Anal Calorim (2009) 97:911–915

DOI 10.1007/s10973-009-0094-4



– The exciting beam thermal and optical profiles are

coherent.

These assumptions are justified on the grounds that

keyhole both vertical and radial extents h and b, respec-

tively (Fig. 3), are small when compared to bulk ones.

The starting point of the modelling procedure is iden-

tified to the source cut-off date (Fig. 2d).

Theoretical investigations

Source term

The first step in the theoretical investigation consists of

defining the power Qv per unit volume absorbed by the

keyhole:

Qv ¼
Pak

Vkeyhole

¼ 4Pak

hpb2
ð1Þ

where Pak is the total power absorbed by the keyhole

volume.

This volumetric source term will be useful for deter-

mining the maximal central temperature T0.

Heat equation

In respect to the assumptions expressed in the section

‘‘Keyhole approximation model’’, the main heat equation

inside the keyhole is:

oT x; tð Þ
ot

¼ 1

D

o2T x; tð Þ
ox2

; t [ 0; xj j\b

T x; tð Þjt¼0¼ T0 � e�
x2

2b2 ; T x; tð Þjt!1¼ T1

8
><

>:
ð2Þ

where T? is the room temperature.

T(x,t) is first expressed as an infinite sum of the B.

polynomials [7–11], whose expression fits boundary

condition.

T x; tð Þ ¼ T0 � e�
x2

2b2 � 1

2N0

XN0

n¼1

nn � B4n t
an

tm

� �

ð3Þ

where an are the minimal positive roots of the Boubaker

4n-order polynomials B4n [9–11], rm is the maximum sheet

radial range (where the temperature is supposed to be room

one), N0 is an even given integer, T0 is the maximal central

temperature and nn are coefficients to be found.

Equation (2) is then altered to:
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which gives:
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� x
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and the system:
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Fig. 2 Steps and mechanism of keyhole formation

Fig. 3 Keyhole geometrical representation
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Fig. 1 Keyhole formation scheme
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Thanks to the Boubaker polynomials properties:
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the system (6) is reduced to:
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A solution to the system (10) is:
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The correspondent calculated parameters are gathered in

Table 1.

Determination of T0

T0 is obtained by analogy with Coulomb approximation

[12, 13]:

When a b-radius cylindrical material with thermal con-

ductivity k, receives a uniformly distributed power P (fig-

ure), its surface constant temperature rise is expressed

by (12):

T0 ¼
P

2pk

1

b
ð12Þ

Our studied model differs from this general approach by

non uniformity of the heat distribution. By analogy, an

approximation of maximum central temperature can be

obtained by replacing term b in expression (12) by an

equivalent radius value b̂ defined as an arithmetical mean

of radii weighted by elementary incident intensity on an

elementary r-associated volume dV, which is an r-radius

hollow cylinder of thickness dr and height h:

b̂ ¼
Rþ1

0
e�

x2

2b2 2phxdx
Rþ1

0
e�

x2

2b2 2pxdx
¼ 2b

ffiffiffi
p
p ð13Þ

The source term is also approximated as a Gaussian

distribution:

P ¼
Z0

�h

Zþ1

0

Qv � e�
x2

2b2 2pxdx

0

@

1

Adz

¼
Z0

�h

Zþ1

0

4Pak

hpb2
� e�

x2

2b2 2pxdxdz ¼ 8Pak
ffiffiffi
p
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We obtain finally:

T0 ¼
2Pak

pkb
¼ hbQv

2k
ð15Þ

The temperature profile is deduced from (Eqs. 3, 11, 15)

and the values shown in Table 1.

Table 1 Parameters values

n = 4q an un h nð Þ � u N0�nþ1ð Þ nn

1 1.1894 2.00542 -0.03973 0.1090

2 0.5078 0.67795 -0.05730 0.4912

3 0.3114 0.33931 -0.07947 0.2188

4 0.2236 0.18726 -0.11672 0.3201

5 0.1742 0.11672 0.18726 -0.5116

6 0.1428 0.07947 0.33931 -0.930

7 0.1208 0.0573 0.67795 -1.8595

8 0.1003 0.03973 2.00542 -5.0050

N0 ¼ 8 PN0

n¼1

h nð Þ � u N0�nþ1ð Þ ¼ 2:91672
PN0

n¼1

nn ¼ �N0
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Experiment

Experimental setup

The laser welding was carried out using a ROFIN DC030

CO2 laser source setup (Fig. 4). The produced beam is

deviated toward the targeted zone by copper mirrors.

The work pieces were two 3 mm thick Magnesium

AM60 sheets. The laser power was 3 kW in TEM01 mode.

The welding speed was set to 4.2 m min-1 under a Helium

flow of 40 L min-1.

Measurements T = f(t) mounting

Temperature measurements were carried out using

detachable thermocouples linked to data-processing unit

via NI 9012 connectable modules (Fig. 5).

Results and discussion

The obtained temperature evolution is presented in (Fig. 6)

along with theoretical results detailed in the section

‘‘Theoretical investigations’’.

It is known that a good knowledge of the cooling

velocity profile is necessary for predicting and monitoring

many interesting items like initial solidification uniformity,

slab solidification structure, and metal purity. In this con-

text, the cooling velocity profile (Fig. 7) was derived from

the results shown in (Fig. 6, cooling phase). It is noted that

using DERIVE_6 software, the time (t = 0) corresponds to

the cooling phase starting date (&0.6 s in Fig. 6).

The shape of this profile (Fig. 7) is in concordance with

the profiles presented by Paul and Debroy [14], Andreassen

et al. [15] and �Belcher [16]. The velocity range

(0–82 �C s-1) is also agreeing with the values published by

Santos et al. [17] and more recently by Mughal et al. [18].

Conclusions

A theoretical–experimental model of heat transfer inside a

cylindrical keyhole laser welding [19–28] was presented.

The yielded temperature evolution was compared to

both experimental results and recently published results

[14–32]. The model was adapted in order to evaluate the

cooling velocity.

Fig. 4 Experimental setup

Fig. 5 Temperature measurement mounting
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Fig. 6 Temperature evolution (theory and experiment)

Fig. 7 The cooling velocity profile
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Actually, we are trying to exploit the present model, by

implementing real-time velocity measurements, in order to

prove that the cooling velocity can be reduced by the

presence of appropriate alloying elements. This feature is

very interesting since it is an issue for hardening with mild

quenching.
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